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Evolvable hardware is reconfigurable  hardware that 
self-configures under the control of an  evolutionary 
algorithm.  The search for a  hardware configuration  can 
be made in software  and the final solution can be 
downloaded  to  hardware. Alternatively, evolution in 
hardware (directly on the chip), can  speed-up the search 
for a solution circuit by a few orders of magnitude 
compared to evolution in software simulations. 
Moreover, since the software  simulation relies on  models 
of physical hardware  with limited accuracy, a solution 
evolved in software  may  behave differently when 
downloaded in programmable  hardware;  such 
mismatches are avoided  when evolution takes place 
directly in hardware. 

Hardware evolution is performed  through a 
succession of changes of elementary  cell  functions  and 
cell inter-connectivity pattern, thus obtaining 
increasingly fitter configurations unt i l  target 
functionality is reached. As i t  is the case in nature, 

was  not possible. An alternative  encoding technique  for 
analog circuit synthesis, which has  the advantage of 
reduced  computational  load  was  used in [2] for 
automated filter design. 

On-chip evolution was  demonstrated by Thompson 
[3]. Thompson  used  an  FPGA as  the programmable 
(digital) device, and a Genetic Algorithm (GA) as the 
evolutionary  mechanism to configure a frequency 
discriminator  from the digital gates available on a small 
part of the FPGA.  Although  evolution  used the circuitry 
prepared to implement logic gates, the functionality was 
obtained exploiting more the underlying  physical 
phenomena  at transistor level. 

In particular, it is interesting to evolve circuits based 
on CMOS transistors. CMOS Transistors are the 
elementary building block of the majority of current 
microelectronics  and  addressing  evolution at this low 
level  allows  most tlexibility for  synthesizing analog, 
digital and  mixed signal designs. Although  for  many 
functions it is easier to  synthesize  based on higher-level 
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dedicated blocks, the lessons learned in synthesizing at 
this level can be extended to  evolution of circuits systems 
made of other devices and materials/structures. An 
important part of our activity is developing dedicated 
hardware capable of evolution of  both analog and digital 
circuits, directly on the chip. 

This paper  proposes a Programmable Transistor Array 
(PTA) as  a platform for experiments in evolutionary 
synthesis of electronic circuits. On-chip evolutionary 
experiments with the PTA are expected  to  lead to design 
guides for a true stand-alone evolvable chip. An 
elvlution on a simulated JTA illustrateq the feasibility of 
autoinated synthesis. A chip was designed and fabricatLd 
to validate the results in real hardware. 

The paper is organized as follows: Section 2 describes 
the principles of evolutionary synthesis of electronic 
circuits. Section 3 discusses a GA that acts as the 
evolutionary self-configuration mechanism and describes 
an evolutionary design tool  developed around a parallel 
GA package and  a circuit simulator. Section 4 proposes a 
Programmable Transistor Array as an experimental 
platform for evolutionary synthesis of both analog and 
digital CMOS circuits. Section 5 describes an 
experiment in  which a CMOS circuit with a Gaussian I- 
V imposed characteristic was synthesized by evolution. 
Section 6 discusses hardware aspects related to the 
implementation of the PTA  on a 0.5 micron CMOS test 
chip. Section 7 presents the evolution directly on the 
PTA chip  and compares the software and hardware 
experiments. Section 8 presents some  lesons learned from 
the experiments, while Section 9 presents the conclusions 
of the paper. 

2. Principles of evolutionary  synthesis of 
electronic  circuits 

This section describes the principles of evolutionary 
synthesis of electronic circuits, and highlights some 
important results in the field. The idea behind 
evolutionary synthesis, or EHW is  to employ a 
search/optimization algorithm that operates in the space 
of all  possible circuits and determines solution circuits 
with desired functional response [4], [5]. Most 
experiments were performed using evolutionary 
aigorithms such as GA and GP. The genetic search is 
tightly coupled  with a coded representation for the 
circuits. Each circuit gets associated a “genetic code” or 
chromosome; the simplest representation of a 
chromosome is a binary string,  a succession of Os and 1s 
that encode a circuit. Synthesis is the search in the 
chromosome space for the solution corresponding to a 
circuit with a desired functional response. The genetic 
search follows a “generate and test” strategy: a 
population of candidate solutions is maintained at each 
time; the corresponding circuits are evaluated and the 
best candidates are selected and reproduced in a 
subsequent generation, until a performance goal is 
reached. Circuit evaluation can be done on software 
models using circuit simulators, in which case evolution 
is called extrinsic evolution, or directly in reconfigurable 
hardware, in which case it is called intrinsic evolution. 

The main steps of evolutionary synthesis are 
illustrated in Figure 1 .  First, a population of 
chromosomes is randomly generated. The chromosomes 
are converted into circuit models  (for extrinsic EHW) or 
control bitstrings downloaded to programmable hardware 
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Figure 1 : Evolutionary synthesis of electronic hardware 



(intrinsic E M ) .  Circuit responses are compared against 
specifications of a target response, and individuals are 
ranked based  on  how  close  they  come  to satisfying it. 
Preparing for a new iteration loop, a new population of 
individuals is generated from the pool  of  best individuals 
in the previous generation, some individual being taken 
as they  were and some being modified by genetic 
operators, such as chromosome crossover and mutation. 
The process is repeated for many generations, and results 
in increasingly better individuals. The process  is  usually 
stopped after a number of generations, or when the 
clowness to the target response has reached a sufficient 
clegree. Cne or several solutions may be found among 
the individuals of the last generation. 

3. Details  of  the  Evolutionary  Algorithm  and 
its software  implementation  within a design 
tool 

This section details the GA used  in the experiments 
that follow and an evolutionary design tool built around a 
parallel GA implementation and a circuit simulator. The 
tool  was  used  on a 256-processor machine to simulate 
evolution of circuits of CMOS transistors. 

A variety of Evolutionary Algorithms (including GA 
and GP) have been  used successfully for evolution of 
circuits. A GA  was  chosen here because (a) previous 
work has demonstrated its efficiency in evolutionary 
circuit synthesis, (b) the mechanism is simple to 
understand and implement, (c) public domain software 
exists and saves development time, and (d) the focus  was 
on the reconfigurable hardware and not on the 
reconfiguration mechanism. It is likely that more 
intelligence can  be inserted into the search mechanism. 
A simple block diagram of operations taking place in a 
GA is illustrated in Figure 2. 
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Figure 2: Sketch of a simple GA 

An evolutionary design  tool was developed  to facilitate 
experiments in simulated evolution. The tool illustrated 
in Figure 3 can be used  for synthesis and optimization of 
new  devices, circuits, or architectures for reconfigurable 
hardware. These operations get performed  before any 
hardware gets fabricated. The tool  proved  very  useful in 

testing architectures of reconfigurable HW and 
demonstrating evolution on them  before the fabrication of 
a dedicated reconfigurable chip. The tool can also be 
used in hardware-software co-design. In its current 
implementation the tool uses the public domain Parallel 
Genetic Algorithm package PGAPack and a public 
domain version of SPICE 3F5 as circuit simulator. An 
interface code links the GA  with the simulator where 
potential designs are evaluated, while a GUI allows easy 
problem formulation and visualization of results. Each 
generation the GA produces a new population of binary 
chromosomes, which get converted intc voltages ir: 
netlists that describe candidate circuil deslgns, netlists 
further simulated by SPICE. 
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Figure 3: An Evolutionary  Design Tool 

4. Hardware  platform  for  evolutionary 
synthesis  experiments 

This section introduces evolution of CMOS circuits 
based  on Programmable Transistor Arrays, describing a 
design for hardware reconfigurable at transistor level. 
The PTA allows synthesis of analog, digital and mixed- 
signal circuits, being a more suitable platform for 
synthesis of analog circuitry than existing FPGAs or 
FPAAs, extending the work  on evolving simulated 
circuits to evolving analog circuits directly on the chip. 

The F'TA idea was introduced in [6], and expanded in 
[7]. The proposed  PTA  is an array of transistors 
interconnected by programmable switches. The status of 
the switches (On or Off) determines a circuit topology 
and consequently a specific response. Thus, the topology 
can  be considered as a function of switch states, and can 
be represented by a binary sequence, such as "101 I ...", 
where by convention one can assign 1 to a switch turned 
On and 0 to a switch turned Off. The PTA is a modular 



architecture, in which modules can be cascaded to 
determine a more complicated circuit topology. Figure 4 
illustrates, an example of a PTA  module consisting of 8 
transistors and 24 programmable switches. In this 
example the transistors P1-P4 are PMOS and N5-N8 are 
NMOS, and the switch based-connections are in 
sufficient number to allow a majority of meaningful 
topologies for the given transistors arrangement, and yet 
less than the total number of possible connections. 
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Figure 4: Module of the Programmable 

Transistor Array 

Programming the switches On and Off determines a 
circuit for  which the effects of non-zero, finite impedance 
of the switches can be neglected in the first 
approximation. An example of a circuit drawn with this 
simplification is given  in Figure 5. 

Figure 5: Schematic of a simple circuit 
implemented on  the PTA module (with finite 
resistance of Off switches as  dotted  lines  on  the 
right  figure) 

The left drawing illustrates the ideal circuit, the right 
drawing shows with dotted lines the finite resistance of 
open switches. A power supply, input signals and a 
biasing current source have been added. 

In this implementation four layers of transistors (two 
PMOS and two NMOS) were chosen, but this can be 
increased, for example to 6 or 8. On the “horizontal” 
direction the PTA architecture allows implementing 
bigger circuits by cascading PTA modules. A simple 
expansion would be by connecting two adjacent modules 
with a set of programmable connections. One such 
expansion with 24 connections between  two  modules 
(and thus a total of 72 programmable elementsj was 
simulated. Although further research is needed  before 
conclusive remarks can be made, the cascaded ensemble 
of two  modules has shown rich behavior, and was able to 
evolve solution circuits to the experiments presented in 
the next section. It is likely that  a cell-based architecture 
with the same rich capabilities as found in FPGAs (and 
possibly sharing architectural design ideas) will be 
needed. 

One important question  is “how do we know the size 
of the circuit that the evolution would synthesize?” In 
the simulated experiments performed so far a choice was 
to use one or  two modules, but  for arbitrary functions, 
without a prior knowledge of a human-designed circuit, 
we may  not  have a clear estimate of what is a good size 
(is it one, two  or  ten modules?). If  we choose fewer 
modules than necessary we perform a search in a space 
where there is no solution. On the other hand, a too  big 
search space complicates the evolutionary search. 

One possible  solution  is to use  many internal 
testpoints on the PTA as possible outputs and narrow 
down the selection  based on a distance of the response 
probed there and target response. This can be 
individuals in the same population with different sizes 
(chromosome length) or simply routed outputs and 
parallel evaluation of many circuits. A part of the 
individual genetic  code  would indicate where is the 
output probed. 

5. An  experiment  in  evolutionary CMOS 
circuit  synthesis  on  a  simulated PTA 

This section details the  evolution of a circuit with a 
Gaussian I-V DC response. The evolutionary synthesis 
approach illustrated in Figure 1 was applied to the model 
of PTA illustrated in Figure 4. 
Evolutionary synthesis of a computational circuit was 
chosen  to illustrate the approach. The goal of evolution 
was  to synthesize a circuit which exhibits a Gaussian I-V 
characteristic. In a previous experiment [8] the circuit 
topology was  fixed and the search search/optimization 



addressed transistor parameters (channel length and 
width); such  evolution  proved quite simple. The search 
for a topology turned out  to be a much harder problem 
and several architectures were  unsuccessfully attempted 
before the PTA was conceived. In the  PTA case, the 
transistor parameters were  kept  fixed  and the search was 
performed for the 24 binary parameters characterizing 
switches status. An important role was the correct 
specification of the fitness function, for  which a weighted 
combination of parameters x I , .  . . ,x7 in Figure 6 was 
used. 
The ewdutiop was simulated OR 2 Caltech syercomputer 
(W-Exmqlar), usinb the Evolutiondry De:siglr Tool. 
Successful  evolution  was demonstrated on multiple runs 
with populations between 50 and 5 12, evolving for 50 or 
100 generations. The execution time depends on the 
above variables and on the number of processors used 
(usually 64 out of the 256 available), averaging around 
20 minutes (the  same evolutions took about 2 days on a 
SUN SPARC IO). In some runs the solution circuit 
shown in Figure 5 (human designed) was rediscovered by 
evolution. 
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Figure 6: Parameters used for the  specification 
of the  fitness  function.  Fitness  =f(xl, ... x7) 

Other solutions found include the circuits illustrated in 
Figure 8, which produce the first two responses in Figure 
7; some other responses from the same generation are 
illustrated in Figure 7 for comparison. It  is interesting to 
analyze in more detail the unusual solutions found by 
evolution. Circuits like those illustrated in Figure 8 
resulted from evolutionary synthesis are very similar 
(under certain test conditions) to that of the circuit shown 
in Figure 5. Thicker dotted lines show connections that 
existed in the circuit in Figure 5, but are missing in the 
circuits in Figure 8. As it is easy to  observe these circuits 
are outside normal design practices, e.g., the transistors 
P2,  P4 and N8 on the left circuit in Figure 8 and P2  have 
floating gates. The reality is  that the switches have a big, 
but finite, resistance in the Off state ("Ohms or 
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Figure 7: Best circuit responses in a simulated 
evolution 

GOhms) and  a non-zero resistancdimpedance in the On 
state (- tens of Ohms). One observation  from here is that 
while the effects of non-perfect  switches may be 
negligible in a first  approximation for  many digital 
circuits, such effects may fundamentally  affect  analog 
programmable  circuits. 

Figure 8: Circuits obtained  by  evolution; their 
design is unusual for common practice 

6. Hardware  Implementation 

Successful  evolution on simulated PTA encouraged the 
development of a test chip implementing the PTA 
architecture. The chip would  offer an estimate on how 
reliable is  evolution on SW models. More importantly, 
evolution of the circuit directly on the chip becomes 
possible,  and at an  expected accelerated pace of over 100 
times compared to  the simulation (estimated -5 seconds 
compared to -20 minutes on the supercomputer for the 
experiment described). As in the experiments performed 
in simulations the size of transistors was fixed. The 



programmable switches were  implemented with 
transistors, acting as simple T-gate switches. There were 
several considerations for this choice: 
a) The switches has to pass analog signals 
b) The resistance of the switches needed  to be variable 

between  low (-tenshundreds of ohms) and high (in 
excess of tens and hundreds of MOhms and above). 

c) Intermediate resistance was necessary  (for 
experiments that will be described elsewhere) but 
linearity (R=R(Vgate-cuntrol )I W I ~  not important 

One should mention that the analog gradual switches act 
in circuit evolution  very much like resistive weights in a 
newal nct1;ork Implemectatiol:. 
Each chip implements one PTA module. To offer 
sufficient flexibility the chip  has  all transistor terminals 
(except those connected to power and ground) connected 
via switches to expansion terminals. A crossbar switch 
array could  be  used,  but in the  initial experiments some 
connections of choice will be wired. The switches will be 
controlled in tandem to  ensure  a connection between the 
terminals of the two  modules. 
The  chip was fabricated as  a  Tiny  Chip through MOSIS, 
using 0.5-micron CMOS technology. The test board  with 
four chips mounted on it is illustrated in Figure 9. 

Figure 9: A test board with  four PTA Chips 

7. Evolution on the PTA chip 

The same evolutionary experiment, aiming at the 
synthesis of a DC circuit with a Gaussian response, was 
performed in hardware on the PTA chips, (the GA  was 
implemented in Labview). Four chips were programmed 
in parallel with bit-string configurations corresponding to 
four individuals of a population of 100; then, the next 
four  were programmed, and so on until all 100 in one 
generation were tested. As in simulation, evolution  led to 
“Gaussian” circuit solutions within 200-300 generations. 
The response of four mutants is illustrated in the screen 
capture shown in Figure I O  (LabView display of the 
signals captured by the data acquisition boards). Notice 
the “mutations” in the genetic code of the solutions 
(vertical chromosomes R24 - RI  reading from  top  to 
bottom - these correspond to switches S24 - S 1 in Figure 
4) compared with the generic solution. 

Figure 10: The  “Gaussian”  response of four 
“mutants”  and  their  “genetic  code”  compared  to 
the  generic  solution 

8. Lessons  learned 

An interesting observation was that, other than the 
“correct” human-designed solution rediscovered by 
evolution, the solutions evolved on the PTA chip  are 
different than those evolved  in simulations. (At least 
the few of them that were tested; additional circuits 
,solutions may exist that lead to the same response 
both  in the Spice simulation and programmed on the 
chip). It would thus appear that different effects are 
exploited to  lead  to solutions in the model and in the 
silicon implementation. More precisely, the circuit 
solutions evolved in simulations (with Spice resistive 
models for  On/Off switches) did not  prove to be 
solutions when programmed on the PTA chip, and 
vice-versa, the configuration solutions evolved 
directly on the PTA chip  (e.g. those in Figure 10) did 
not simulate as Gaussians. (Further experiments 
using more accurate models of the PTA silicon 
implementation are in progress). Thus, it appears 
justifiable to express reserve on the validity of a 
solution obtained by “extrinsic” evolution of analog 
circuits until is verified in hardware (at least for 
particular PTA discussed here and with the limited 
accuracy model used). 
The original intent was to speed-up the evolution 
from -20 minutes on the supercomputer to about 5 
seconds on the ITA chip (reducing the evaluation of 
a circuit to -0.75ms). At this moment, LabView 
(running on a 300 MHz Pentium) presents some 
communication bottlenecks that only allowed 
reaching about  the same evolution time as on 
supercomputer. In the quest for faster circuit 



evaluation on the chip  a further limitation was 
however noticed, ignored  when running Spice  DC 
analysis only: the circuits have  own  frequency 
response  and there are limits of possible  speed-up for 
which the response is  the same as in DC/low 
frequency. The output of the Gaussian circuit on the 
ITA starts attenuation when the input ramp  signals 
exceed lkHz, meaning that  that no more  than 1000 
circuits per  second  could be reliably evaluated. Even 
though this may be  an artifact of  the particular FTA 
design  and  load choice, it appears natural that 
evaluating the circuits at a different frequency  than 
h t  cf illtended functioning  may  introduce errors. 
Evaluation in parallel is an alternative speed-up 
technique, and  at least in the experiments  with the 
PTA chips no significant differences were  noted 
between the  instantiations of the same circuit on 
different chips. 

9. Conclusion 

Automatic synthesidself-configuration of analog circuits 
was  demonstrated  on  an  experimental  CMOS chip 
implementing a Programmable  Transistor  Array 
architecture proposed as reconfigurable hardware 
platform  for  evolutionary synthesis experiments. The 
experiments  bring further testimony to the feasibility of 
using evolutionary algorithms for automated synthesis of 
electronic circuits. A comparison of the simulated  and 
on-chip  experiments indicates limitations of the extrinsic 
evolutionary  method; the solutions obtained in 
simulations  were  not validated when  programmed on the 
chip. However, different solutions have  evolved  on the 
chip, and proved robust when transferred to other chips 
from the same fabrication lot. 

10. Acknowledgements 

The research described in this paper  was  performed at 
the Center  for Integrated Space Microsystems, Jet 
Propulsion  Laboratory, California Institute of Technology 
and  was  sponsored by the National  Aeronautics  and 
Space  Administration. 

Several  people contributed to the development  presented 
here. Two  JPL  summer intern students deserve special 
acknowledgement  and  thanks  for their dedicated  effort: 
Carlos Salazar-Lazaro,  from  Rensselaer  Polytechnic 
Institute, who  wrote  most of the simulation software, and 
Wei-te Li, from  University of Washington,  who  did  most 
of the  chip design  work.  Raoul  Tawel contributed to chip 
design, and Ken Hayworth and Didier  Keymeulen 

contributed to testing the chip  and evolution directly on 
the chip.  The author also wishes  to thank the reviewers of 
this paper for their useful suggestions. 

9. References 

[ I 1  J. Koza. F.H. Bennett. D. Andre, and M.A Keane, 
”Automated WYWIWYG design 01 both the topology and 
component  values of analog  electrical  circuits  using  genetic 
programming”, Proceedings  of Geneti- Programming 
Conference, Stanford,  1996, pp. 28-31. 
[2] J. Lohn, J. and S. Colombano,  “Automated  Analog  Circuit 
Synthesis  using a linear  representation”, M. Sipper, D. Mange 
and  A.  Perez-Uribe (Eds.) Evolvable  Systems: From Biology  to 
Hardware, Springer-Verlag  Lecture  Notes in Computer  Science 
Berlin  1998,  pp.  125-133 
[3] A. Thompson, An evolved  circuit,  intrinsic in silicon, 
entwined  in  physics. In International  Conference on Evolvable 
Systems. Springer-Verlag  Lecture  Notes in Computer  Science, 
1996,  pp.  390-405. 
[4] De  Garis,  H.  Evolvable  Hardware:  Genetic  Programming of 
a Darwin  Machine. Int. Con5 on Artificial  Neural  Networks 
and Genetic  Algorithms, Innsbruck,  Austria,  Springer Verlag, 
1993 
[5] Higuchi  T. et al,  Evolvable  Hardware with Genetic 
Learning,  in  Proc. of Simulated  Adaptive  Behavior, MIT Press, 
1993 
[6]  Stoica,  A.,  “Reconfigurable  Transistor  Array  for  Evolvable 
Hardware”,  CaltecWJPL  Novel  Technology  Report,  July  26, 
1996 
[7] Stoica, A. and Salazar-Lazaro,  C.  “Evolutionary  technique 
for automated  synthesis of electronic  circuits”  Caltech/JPL 
Novel  Technology  Report,  Sept. 4, 1998 
[8]  Stoica,  A., On  hardware  evolvability  and  levels  of 
granularity. In International  Conference on Intelligent  Systems 
and Semiotics, NIST  Gaithersburg  VA,  Sept,  1997 


